Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0381120180400080873
Genes and Genomics
2018 Volume.40 No. 8 p.873 ~ p.880
Two new complete mitochondrial genomes of Dorcus stag beetles (Coleoptera, Lucanidae)
Chen Yong Jing

Liu Jing
Cao Yu Yan
Zhou Shiju
Wan Xia
Abstract
The systematics of Dorcus MacLeay has been a long-standing debate. Mitochondrial genomes were widely used to deeply understand the phylogeny of problematic taxa in virtue of their genetic importance and comprehensiveness. To provide more useful genetic data for resolving the systematic disputation of Dorcus stag beetles. The complete mitochondrial genomes of Dorcus hopei and Dorcus seguyi were obtained using the next generation sequencing. Characteristics of the two genomes are explicated through comparing their genome organization and base composition, protein-coding genes and codon usage, intergenic spacers and non-coding region, transfer and ribosomal RNA genes and control region. Phylogenetic relationships were reconstructed using Maximum likelihood and Bayesian inference analyses based on the concatenated nucleotide sequences of 13 PCGs from 9 stag beetles and 3 scarab beetles. The complete mitogenomes of D. hopei and D. seguyi was 16,026 bp/17,955 bp long, respectively. A tandem repeat with the length of 940 bp was presented in the A+T-rich region in D. hopei. An unexpected non-coding region of 332 bp was located between nad2 and trnW in D. seguyi. The phylogenetic analyses robustly supported that D. hopei formed a branch with the generic type of D. parallelipipedus. Whereas D. seguyi was not covered in the branch of (D. hopei?+?D. parallelipipedus), but was sister to them. The results indicated that D. hopei should be a good member of Dorcus MacLeay. The taxonomic status of D. seguyi remained to be studied furtherly.
KEYWORD
Mitochondrial genome, Dorcus seguyi, Dorcus hopei, Phylogenetic analysis
FullTexts / Linksout information
Listed journal information
SCI(E) ÇмúÁøÈïÀç´Ü(KCI)